

USER PREFERENCE MANAGEMENT IN A PERVASIVE SYSTEM SHOULD

BE A TRUSTED FUNCTION

Sarah McBurney, Elizabeth Papadopoulou, Nick Taylor, M. Howard Williams

Heriot-Watt University

Riccarton, Edinburgh,

UK

{ ceesmm1, ceeep1, nkt, mhw}@macs.hw.ac.uk

ABSTRACT

In developing a ubiquitous or pervasive system, the

privacy of the user needs to be protected as much as

possible. At the same time the system needs to take

account of the user’s wishes in taking decisions on behalf

of the user by maintaining a set of user preferences for

each user. This involves not only the management of such

preferences but also monitoring the user and automatic

learning of new preferences or updates to existing ones.

The need for privacy may lead to a crucial decision in the

design of a pervasive system as to whether or not to treat

the components dealing with personalization and user

preference management as trusted components. This

paper discusses four of the problems that arise if these

components are not treated as trusted. Two of these are

dealt with relatively easily although the remaining two are

more challenging. Overall, the paper demonstrates why it

is important to have an integrated system in which this

functionality is trusted.

KEY WORDS

Pervasive, User preferences, Privacy, Trusted.

1. Introduction

Since the notion of ubiquitous computing was first

mooted in the early 1990s, both ubiquitous [1] and

pervasive [2] computing environments have attracted

growing attention. Pervasive computing addresses the

problem of the increasing complexity associated with the

rapidly increasing number of devices and services

available to the user, and aims to provide the necessary

support to enable the user to manage the situation.

Although solutions have been developed for different

aspects of the problem, many of the major problems

facing ubiquitous and pervasive computing have yet to be

solved satisfactorily.

In recent years a number of prototypes have been

developed, focusing on different aspects of the problem.

Although these types of systems are still very much

prototypes or at the experimental stage of their

development, some researchers believe that by 2020 these

will be solved and this technology will be in the market

place. In the meanwhile some of the global challenges of

the next decade [3] lie in this area.

From an early stage the prototypes that were developed

recognised the importance of personalization. As

pervasive systems become more and more complex, they

need to be managed in such a way that the user is in

control. To do this it is essential to take account of user

needs and preferences in decision making within such a

system. This is necessary in order to produce a system

that will be acceptable to the user. Equally important is

the notion of privacy. Designing a system that ensures the

latter could place constraints on the design of the other

components in the system, such as the former.

Daidalos is a large research project funded by the

European Union. Its target is the integration of a range of

heterogeneous networks and devices and the creation of a

pervasive system (service platform) [4] on top of this,

which protects the user from the complexity of the

underlying infrastructure while providing personalised

and context aware services with minimal user

intervention.

Two of the areas that have been studied in detail in

Daidalos are personalization and privacy. In the process

some attention has been given to the potential conflict

between the two. One way in which this has been

addressed is by designing and implementing two different

prototypes based on different assumptions. In one the

personalization and user preference management

functions were treated as trusted functions and were

integrated into the system. In the other these functions

were not trusted and were isolated from the core of the

pervasive system.

This paper discusses how personalization and user

preference management are handled and some of the

problems arising from treating them as untrusted

functions that are isolated from the core. The results of

this are being used to shape the architecture of another

pervasive system which is being developed within the

Persist project. The next section introduces briefly some

aspects of personalization and pervasive systems. Section

3 briefly outlines the use of personalization and user

mailto:mhw%7D@macs.hw.ac.uk

preferences in Daidalos. Section 4 describes problems

arising from the implementation of the pervasive system

in Daidalos when personalization and user preference

management are not trusted. Section 5 summarizes and

concludes.

2. Personalisation and Pervasive Systems

Personalisation is concerned with the adaptation of the

appearance and/or behaviour of a system to meet the

needs and preferences of each individual user. Recent

research tended to focus on the Web, and was concerned

with adapting the search or the presentation of

information to suit individual users. There was also

considerable interest in techniques that could be used in

web services for marketing purposes. However,

personalisation in pervasive systems is much wider than

this.

The value of learning techniques to enhance

personalisation was soon recognized and, as a result, a

number of recommender systems were developed that

would benefit the user during visits to e-commerce

websites by recommending products that matched the

user’s preferences and budget.

To take account of the needs and priorities of the

individual user, these need to be captured in a set of “User

Preferences”. In a pervasive system these will, in general,

be context-dependent. These user preferences may take

the form of a set of rules or possibly a neural network or

Bayesian network. This paper is concerned with the case

where the user preferences are a set of rules. The main

challenge is to capture the user preferences in the required

format and to refine and adapt these with time as the

knowledge about the user is accumulated so that the

resulting user profile adequately reflects the user’s needs

and priorities. By so doing one can automate some of the

decision making in the system to relieve the user of this

burden.

A number of pervasive systems prototypes include user

preferences to assist decision making. Projects such as the

Intelligent Home [5] and Blue Space [6] both rely on

user-supplied preference information while others such as

the Adaptive House [7], GAIA [8] and MavHome [9]

monitor user actions and use learning techniques to

discover and improve preferences. Yet other systems that

use learning include Mobilife, Ubisec, etc.

3. The Daidalos Pervasive Platform

The basic functionality contained in the Daidalos

pervasive system includes the following:

(1) Service Discovery and Selection.

(2) Service Composition.

(3) Session Management.

(4) Personalisation.

(5) Context Management.

(6) Security and Privacy.

The first prototype that was developed treated these six

functions equally and provided a basic set of the

functionality required to support the user in a pervasive

environment. The architecture consisted of six modules

although these were slightly different from the six basic

functions listed above, and is described in [4].

In the second prototype different assumptions were made,

including the fact that some of these six basic functions

might be provided by different service providers. In this

regard context management, personalisation and even

service discovery and selection were identified as possible

candidates that might be provided by software developed

by different providers. As a result these modules were no

longer treated as trusted components and the user’s

identity was concealed from them.

Within Daidalos user preferences are handled using a

combination of three different strategies. Firstly, in order

to assist the user with creating an initial set up of user

preferences, a set of stereotypes is provided [10]. A

stereotype consists of a typical set of user preferences that

corresponds to a user with a typical pattern of behaviour.

In particular, this may be useful in the case of individual

services where cluster analysis can identify clusters in the

options selected. When a stereotype is selected for a

service, the relevant set of user preferences are loaded

into the user profile, thereby enabling an initial profile to

be created rapidly.

In addition to the use of stereotypes, user preferences can

be created or modified by the user manually using a GUI,

designed for the purpose. Although this is a useful way

for the user to see what is stored and to tweak it to meet

their requirements, it is not likely to be the main way of

setting up and maintaining user preferences.

The third strategy used is that of automatic learning of

preferences [11]. By monitoring the user’s reactions to

system decisions and recording the acceptance or

rejection of these together with the current context of the

user, a historical record is established in a database. To

this learning mechanisms are applied to establish new

patterns in behaviour and to create new preference rules

or identify changes to existing ones.

The net effect of this is that the user is able to create an

initial profile very rapidly and the system will then adapt

the profile gradually with time as observation of the

user’s reactions to decisions lead to refinement of his/her

preferences.

In order to protect the privacy of the user in Daidalos the

pseudonym approach has been adopted in the form of a

system of virtual identities (or VIDs) [12]. A virtual

identity can be regarded as a form of user name although

it has additional properties relating to the confidential user

data that it is prepared to release. Each user may have any

number of virtual identities, which the user may use for

different purposes.

4. Consequences of Treating Preferences as

Untrusted

4.1 Effect on User Preferences

The first major effect of isolating the user preference

management functionality from the core of the pervasive

system concerns the linkage to VIDs. Whenever the user

selects a stereotype or amends his/her preferences this is

done through a VID. Likewise whenever the system

observes a user action which might affect his/her

preferences, this is linked to a VID. Thus from the point

of view of the functionality for user preference

management, it maintains a separate set of user

preferences for each user VID.

However, this could be exceedingly frustrating for the

user if he/she maintains a number of separate VIDs with

overlapping preferences. For example, suppose that a user

has five VIDs for different purposes but all have the same

preferences regarding the selection and set up of voice

call services. Not only must he/she select the appropriate

stereotype and/or amend his/her preferences five times,

but also the learning process will go through five times as

many steps before it has learnt the correct preferences for

all five VIDs.

To overcome this problem a system of indirection is used

whereby the set of preferences associated with a VID is

accessed via a pointer. The user can then specify to the

Security and Privacy subsystem that any particular set of

virtual identities should share the same set of preferences.

This subsystem will then create an appropriate set of

indirections so that the user profiles for each of these

virtual identities point to the same set of user preferences.

Now suppose that VID1 and VID2 share the same set of

preferences. If the user or a service operating on behalf of

the user needs to access the preferences, the appropriate

VID is passed to the User Preference Management

function. The latter fetches the relevant set of preferences

via the pointer associated with the VID, and performs

whatever operation is required. In doing so, it knows

nothing about the owner of the VID or whether or not the

preferences associated with this VID are shared by any

other VIDs.

On the other hand if the user amends any of the

preferences associated with VID1, these will obviously

also be amended for VID2. If the learning function detects

user actions that might affect these preferences in either

VID1 or VID2, these are recorded and when sufficient

occurrences have been observed to establish a pattern, the

preference is updated, independently of which VID was

used for each individual action.

4.2 Evaluating Preferences

Once again to protect the privacy of the user, the user

preferences themselves need to be protected. Since the

preferences are context-dependent they may well express

different preferences if the user is at home from when the

user is at work. They may even express different

preferences for locations that are particularly sensitive.

They may contain preferences for particular service

suppliers in certain contexts which the user would not

wish other service suppliers to be aware of. And so on.

In order to avoid any sensitive information from being

released to inappropriate users or services, the preferences

themselves are not revealed to anyone except the user

who owns them and who may inspect and change them

via a GUI designed for this purpose. Whenever a service

requires user preferences, these are evaluated and the

resulting action, referred to as the preference outcome, is

passed to the requesting service.

Thus as far as individual services are concerned,

whenever they request user preferences, the current

preference values are returned. What the alternatives may

be and under what circumstances these might apply are

not revealed.

However, while using a service for which a particular

preference applies, the context of the user might change,

and as a result the preference value might change. A

simple example is the choice of network service to use. If

the user is moving around or the traffic on the network

changes, the QoS may drop, different networks may

become available or the user may interject and the

preferred choice of the user might change.

In order to handle this without revealing the user

preferences, the user preference functionality provides

this facility. When preferences are used in setting up or

running a service, if they are context-dependent, then this

aspect of the user’s context is monitored as long as the

service runs. If the context changes, resulting in a change

in preference outcome, the service is informed of the new

preference outcome, and it is left up to the service to

decide whether or not to act on this.

4.3 Effect on Learning

The previous two sections identified solutions to the

problem of maintaining the privacy of the user through

the use of virtual identities and the concealment of the

user preferences from all but the user him/herself.

However, this section and the next consider other

problems arising from the exclusion of the user preference

management (including learning) facilities from the core,

which are less easy to solve.

The learning functionality is aimed at building up and

refining the preferences of the user. To do this it must

monitor the decisions taken by the user and the context in

which the decisions are taken in relation to specific

system tasks.

A simple example and one which is most important for

pervasive systems, is that of selection of services. When

the user requests a service, a service discovery process is

invoked to find whatever services may be available that

could be used to meet the user’s request. This is followed

by or integrated with a service selection process, which

applies the user preferences to the discovered services.

These can be used to filter the list by removing services

that the user definitely does not want, and to rank the list

by ordering the services according to the preferences of

the user.

The result is a ranked list of services which could satisfy

the user’s request. It may be that a single service is

sufficient to satisfy the request or it may be that two or

more services need to be composed together to meet the

request. Whatever the case, once a selection has been

made, it is necessary to check whether these services are

in fact still live and available. The fact that the service

discovery process has discovered them at some point in

the past does not guarantee that they are still live and

available for use – for example, some other user may have

started using the service since then.

Thus at this point the system needs to test the services

selected for the composed service, and if not all are

available, it must systematically try all possibilities from

the list in order until it eventually finds a composition that

is live and available, in which case the composition is

executed.

The user is informed of the final choice of service made

and is given the opportunity to stop the composition if the

choice is not what the user wanted. If he/she does so, a

different selection will be made.

There are three problems with this approach. Firstly, the

service has already begun to execute when the user is

given the opportunity to stop it. This means that if it were

the wrong choice, the user would have to pay for starting

to execute it. Secondly, it may intrude on the privacy of

the user if the wrong service were started as it may give

information to the particular service provider about the

user.

The third problem is that the learning function does not

have a complete picture of what has happened in the

selection process (e.g. why other preference options have

not been presented to the user) nor does it know which

part of a composition was unacceptable to the user.

4.4 User Preferences for Managing Privacy

Having pointed out earlier that user preferences and

privacy are naturally in conflict with each other, there is

one area where a close link between the two is required.

As already mentioned, when the user makes a request to

the system, the system discovers the most appropriate

services needed to meet that request and composes them

into an executable service to handle the request, and then

executes the composed service. In doing this more than

one VID may be required. First one needs a VID

associated with the user request to perform service

discovery, selection and composition. Then one needs at

least one VID for the composed service, although more

than one VID may be used if required for the component

services.

Now once again decisions are required. Again one can

make the simple assumption that the user will always

select the appropriate virtual identity before requesting

any service. However, this can become an arduous task

for the user, especially if the number of virtual identities

grows. One might argue that this may be a good reason to

restrict the number of virtual identities to a very small

number but this defeats the purpose of having a flexible

system of virtual identities.

The situation is more complex if one takes account of

changing context conditions. Consider the case of a

mobile user who is using a network service. As the user

moves around he/she may need to change to a different

network service (because of falling Quality of Service on

the current network due to wireless reception difficulties,

increased network traffic, etc., or simply the availability

of a more preferable network service). It is not sensible to

interrupt the user to ask whether he/she wants to change

and, if so, what virtual identity should be used.

Thus in order to provide a user-friendly pervasive

environment the system itself should manage the

automatic selection of virtual identities wherever possible,

only resorting to user decision or intervention when

absolutely necessary. In order to do this, whenever a VID

is required for a service, the VID management

functionality executes the following approach:

(1) It determines what private user data are required by

the service and negotiates via a set of privacy policies

what it is prepared to release to the service.

(2) From this a set of potential VIDs that can provide this

data is identified.

(3) The most suitable VID is selected from this list.

In order to do this one needs to know what VID the user

would prefer to use in different circumstances. In other

words, one needs to know the user’s preferences.

However, this set of user preferences needs to be treated

differently from the rest of the user profile. Although their

format is essentially the same, the action performed (the

selection of a virtual identity) is highly confidential. One

would also like the system to learn the user’s preferences

as it does for other preferences of the user.

Now one has an even bigger problem with the assumption

that user preference management should not be trusted. In

order to provide the functionality described, two

alternatives are possible, viz.

(1) One could create a copy of the user preference

management functionality (including the learning

functionality) and adapt it for privacy management. This

can then be incorporated into the core and contained

completely within the Security and Privacy subsystem

and used solely for this purpose. In other words it

becomes a trusted component. This would ensure privacy

although at the expense of a considerable amount of

duplicated functionality.

(2) One retains the user preference management

functionality outside the core, but conceals the actual

VIDs from it. One possibility may be to use cryptographic

techniques. These might be applied to the actions

pertaining to the selection of virtual identities before such

information is passed to the preference management

subsystem, and likewise the information returned may be

decrypted, thereby ensuring the privacy of the user. Thus

when the privacy functionality wants to create or update a

user preference, it passes the information together with

encrypted VID information to the user preference

management functionality to process and store. Likewise,

when it needs a user preference, it invokes the user

preference management functionality, and decrypts any

VID information returned. The preference management

and learning subsystem can treat the resulting preferences

in the same way as for any other service without

understanding the actions.

Both approaches lack parsimony and cohesion. In

addition to this the second approach is unduly

cumbersome whilst leaving unresolved problems for the

learning functionality. The first approach is preferable but

it breaks the assumption that personalization and user

preference management should not be trusted.

5. Conclusion

This paper is concerned with one of the major issues

relating to the design of pervasive or ubiquitous systems,

namely the conflict between personalisation and privacy.

On the one hand one has the problem of building up a

relevant set of user preferences to assist decision making

in the system. On the other hand one has security

mechanisms to protect the privacy of the user. These two

can be in direct conflict. One possible consequence is that

the personalisation and user preference management

functionality (including the learning of user preferences)

is treated as untrusted and isolated from the core. The

effects of such a decision have been studied in the

Daidalos pervasive system.

The first problem that arises is that the user preference

functionality (including learning) must be prevented from

knowing anything about the real identity of the user and

may only operate through VIDs. The second concerns

how the system can protect the user preferences so that

only preference outcomes are seen by any other user or

service. Both of these can be readily addressed.

On the other hand the untrusted approach causes major

problems for the automatic learning of user preferences.

Not only is this functionality hampered by this

assumption, but the user may also be inconvenienced and

may find him/herself paying unnecessarily for services.

In addition one has a major problem in the automatic

selection of virtual identities for use in the privacy

subsystem. Unless the user selects these whenever they

are needed, one needs to rely on the user preference

management functionality. Either one resorts to some

form of cryptographic technique to enable the continued

use of the user preference management functionality

outside the core for this purpose (with consequential

restrictions) or one relaxes the restriction and duplicates

functionality within the core to carry out this function.

Thus the idea of treating personalisation and user

preference management functionality as untrusted should

be avoided if at all possible, as the disadvantages

encountered outweigh any advantages of such an

approach.

Finally, of all a user’s personal preferences, those

pertaining to his/her privacy requirements are perhaps the

most important to him/her. It therefore seems eminently

sensible to ensure that preference management systems

are designed around this type of user preference, rather

than handling them in a non-homogeneous and ad hoc

fashion at a later stage.

The result of this study is being used in tailoring a new

pervasive architecture in the Persist research project

(PERsonal Self-Improving SmarT spaces).

Acknowledgements

The research leading to these results has received funding

from the European Community through the research

project Daidalos (Sixth Framework Programme) and are

contributing to decisions in the project Persist (no.

215098) in the Seventh Framework Programme. The

authors also wish to thank all colleagues in the Daidalos

project developing the pervasive system. However, it

should be noted that this paper expresses the authors’

personal views, which are not necessarily those of the

Daidalos consortium. Apart from funding these two

projects, the European Commission has no responsibility

for the content of this paper.

References

[1] T. Kindberg, & A. Fox, System Software for

Ubiquitous Computing, IEEE Pervasive Computing, 1(1),

2002, 70-81.

[2] M. Satyanarayanan, Pervasive computing: vision and

challenges, IEEE PCM, 8(4), 2001, 10-17.

[3] The UK Grand Challenges Exercise. Available:

http://www.ukcrc.org/grand_challenges/

[4] M. H. Williams, N. K. Taylor, I. Roussaki, P.

Robertson, B. Farshchian, & K. Doolin, Developing a

Pervasive System for a Mobile Environment, Proc.

eChallenges 2006 – Exploiting the Knowledge Economy,

IOS Press, 2006, 1695 – 1702.

[5] V. Lesser, M. Atighetchi, B. Benyo, B. Horling, A.

Raja, R. Vincent, T. Wagner, P. Xuan & S. Zhang, XQ.:

The Intelligent Home Testbed, Proc. Anatomy Control

Software Workshop (Autonomous Agent Workshop),

1999, 291-298.

[6] S. Yoshihama, P. Chou & D. Wong, Managing

Behaviour of Intelligent Environments, Proc. First IEEE

Int. Conf. on Pervasive Computing and Communications

(PerCom ’03), 2003, 330-337.

[7] M. C. Mozer, Lessons from an Adaptive House, in D.

Cook & R. Das (Eds.), Smart Environments:

Technologies, protocols and applications, 2004, 273-294.

[8] B. D. Ziebart, D. Roth, R. H. Campbell, & A. K. Dey,

Learning Automation Policies for Pervasive Computing

Environments, Proc. 2
nd

 Int. Conf. on Autonomic

Computing (ICAC ’05), 2005, pp. 193-203.

[9] M. G. Youngblood, L. B. Holder & D. J. Cook,

Managing Adaptive Versatile Environments, Proc. 3
rd

IEEE Int. Conf. on Pervasive Computing and

Communications (PerCom ’05), 2005, 351-360.

[10] E. Papadopoulou, S. McBurney, N. Taylor, M.H.

Williams, & G. Lo Bello, Adapting Stereotypes to Handle

Dynamic User Profiles in a Pervasive System, Proc. 4th

Int. Conf. on Advances in Computer Science and

Technology (ACST 2008), Langkawi, Malaysia, 2008, pp.

7-12.

[11] S. McBurney, E. Papadopoulou, N. Taylor, & M. H.

Williams, Adapting Pervasive Environments through

Machine Learning and Dynamic Personalization, Proc.

Int. Symp. On Parallel and Distrib Processing With

Applications/Conf. on Intelligent Pervasive Computing

(ISPA-08/IPC-08), Sydney, 2008, pp. 395-402.

[12] J. Girao, A. Sarma, & R. Aguiar, Virtual identities - a

cross layer approach to identity and identity management,

Proc. 17th Wireless World Research Forum, Heidelberg,

Germany, November 2006.

http://www.ukcrc.org/grand_challenges/

